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1. Introduction

Self-supervised pretraining has achieved great success
in natural language processing [2, 11, 24]. Recently, these
models have been adapted to computer vision and have cre-
ated new state-of-the-arts results on many tasks. [8, 9, 12,
15]. The two main two main pretraining paradigms are
contrastive learning and reconstruction pretraining. Among
both paradigms, cropping has been seen as an indispens-
able augmentation method to improve the model’s general
performance. Resizing techniques, which are usually used
together with cropping, are usually neglected by the re-
searchers.

Resizing, especially down-sampling, has an inherent
augmentation effect, which can map high-dimension im-
ages to lower-dimension spaces [18]. However, directly us-
ing images of different sizes may have many kinds of prob-
lems. One problem is the domain shift problem that the re-
sized images’ size can be different from the size during test-
ing [26]. Another problem is that the popular CNN or CNN-
like architecture will generate different shape representa-
tions for input images of different shapes, which makes
batch-wise training and testing impossible [17, 19, 20].

In this paper, we proposed a Double Accelerating
Contrastive Learning Framework, called DAC, which can
deal with these two problems and make full use of the ad-
vantage of resizing.

For the domain-shift problem, we would like to take ad-
vantage of contrastive learning [5, 6, 9, 14, 16]. Contrastive
learning generally takes two views of a single image , aim-
ing to distinguish views of the same image from views of
different images. Since we treat resizing as an augmentation
method, a trivial idea is to use the resized image as one view
of a contrastive learning framework [8]. For the other view,
we are inspired by the mask autoencoder(MAE), where we
use masking as another type of augmentation, which is very
similar to very strong blurring augmentations [15]. A no-
table difference of DAC is that by using down-sampling and
masking, the two views of the images are both in a lower di-

mension space compared to the original image, which can
greatly accelerate the training process.

For the different representation size, thanks to the vi-
sion transformer(ViT), we are able to deal with images of
different sizes by introducing a class token, or CLS to-
ken, which will give coherent size representations for im-
ages [13]. Meanwhile, since the CLS-token is generally
stable, which make introducing simsiam contrastive learn-
ing loss across different layers of the ViT possible [25].

Inspired by the [27], Wang et al. improve the model’s
performance by adding reconstruction target to contrastive
learning models. We also reserve the reconstruction part of
the masking track to enjoy the benefit of both contrastive
and reconstructive paradigms.

Our DAC proposed a general idea that lower dimension
mapping augmentations, like down-sampling and masking,
can boost both the training accuracy and speed of the model.
The idea can be plugged into any existing contrastive learn-
ing, self-knowledge distillation or reconstruction frame-
works [4, 9, 14]. The extensive experiments show the effec-
tiveness of this method, we achieve 0.2% better than MAE
on ImageNet-1K top-1 accuracy by using only half of the
MAE’s training time.

Overall, our main contributions can be summarized as:
1) We propose a new perspective of two views of an im-
age used in contrastive learning, where two views both have
much smaller input dimension compared to the original im-
age, which can greatly accelerate training speed as well as
raise model performance. 2) We propose an asymmetric
framework, taking contrastive learning inputs from differ-
ent transformer layers, which could also make the model
better and faster.

2. Related Works
2.1. Masked Vision Modeling

Most recent works in self-supervised learning are focus-
ing on training vision transformers by using masked im-
ages to reconstruct the original ones [13]. Researchers have
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been testing different kinds of reconstruction objectives and
the three main categories are token-wise, feature-wise and
pixel-wise reconstruction [1, 5, 12, 15, 28, 29]. These kinds
of pretraining tasks are called Masked Image Modeling
(MIM) [1]. Recently, MIM has also been introduced to
other frameworks like self-distillation, autoregressive gen-
eration and contrastive learning, which can further improve
the model’s performance and learn more representative rep-
resentations [5, 7, 23, 30]. Unlike these methods where re-
construction is used as an accessory, we fully exploit the
advantage of reconstruction in our frameworks.

2.2. Contrastive Learning

Contrastive learning is another active self-supervised
learning area, where the model will try to distinguish dif-
ferent views of the same image and the other entirely dif-
ferent ones [5, 6, 9, 14, 16]. The different views of the im-
age are generated through different kinds of augmentations
like cropping, color jitter and gray-scaling. These augmen-
tations have been proved essential for the success of con-
trastive learning. Recently, ViT has been introduced to the
field of contrastive learning, where they use the class token
as the representation of the entire image and achieve better
score than those traditional CNN backbones [4, 9]. Unlike
previous works, our DAC uses two novel views, which are
lower dimension mappings of the original inputs, and intro-
duces an asymmetric architecture to adapt a reconstruction
target to the original contrastive model.

3. Method
3.1. Resizing as Data Augmentation

In contrastive learning, we always need to provide two
different views of the same input image. In DAC, we pro-
posed a totally new pair of views, which use masking and
resizing as augmentation methods. This is based on the fact
that both of them are low-rank approximations to the orig-
inal image. To further improve the model’s performance,
we also add other data augmentations to the proposed two
views, following the Moco V3’s convention [9]. An intu-
ition of the proposed views is to view the masked image
as one with high probability of Gaussian blur, while the re-
sized image as one with low probability of Gaussian blur.
An obvious advantage of the proposed data augmentation
is that it implicitly provides multi-scale views of the orig-
inal image without losing too much information, since we
no longer need cropping or downsampling. In practice, we
make the resized image have the same number of patches as
unmasked parts of the original image.

3.2. Asymmetric Contrastive Learning

We applied SimSiam as our contrastive learning back-
bone, which does not need any extra target network and can

greatly accelerate training speed. Unlike previous meth-
ods, where the augmented images will be passed through
two feature extraction networks of the same structure, we
choose to use features gained from different stages of the
networks for contrastive learning.

More specifically, we will use the encoder output for re-
sized image, and the decoder output for the masked image,
since we believe they are are the most representative fea-
tures for the two views. One potential reason is that masked
images can only gain global information of the image after
the decoder, while resized images have a similar distribution
as those used in downstream tasks, which gives the intuition
that the encoder, which will be used during fine-tuning, is
sufficient to extract high quality features.

The theoretical insights of the comparability between
different stages is that image representation is stable
throughout the transformer, which makes it possible to com-
pare the CLS token between different layers [3].

3.3. DAC as a whole

As shown in Fig 1,the reconstruction task and contrastive
learning will share the same encoder and decoder. Com-
pared to the original MAE model, we only add an extra
two-layer MLP projection layer and 2-layer MLP predic-
tor. Note that reconstruction task are only trained on the
masked image.

The loss function is given by:

L = LC + λLR

where LC is the SimSiam loss given by the contrastive
learning, and LR is the L2 loss given by the pixel-wise re-
construction.

4. Experiments

Our experiments are carried out on two datasets:
ImageNet-1K and ImageNet-tiny [10]. ImageNet is a
widely used dataset for image classification. ImageNet-1K
contains 1000 class with each class having roughly 1000
training samples and 50 test samples. Imagenet-mini is a
subset of ImageNet-1K with each class having 20-30 trainig
samples and 3-5 test samples.

4.1. Implementation Details

Our configuration for pretraining on ImageNet-1K is
shown in Table 1. We find that a decaying loss weight
of contrastive loss generally works better. Our augmenta-
tion details are in Table 2,3, generally following previous
works [9,14]. There are two changes: for downsampled im-
age, we didn’t perform cropping, and we remove the Gaus-
sian blur of original image. Because mask vision modeling
is equivalent to a strong blurring.
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Figure 1. Our model structure, an additional input and contrastive loss are added to the original MAE.

config value

optimizer AdamW [22]
batch size 512

learning rate 3e-4
weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.5
learning rate schedule cosine decay [21]

warmup epochs 40
augmentation Table 2,3
loss weight λ 0.24× 0.996epoch

Table 1. Pretraining config.

augmentation values

resize and crop scale=(0.2 - 1)
color jitter strength=(0.4, 0.4, 0.2, 0.1), p=0.8

random grayscale p=0.2
random horizontal flip p=0.5

Table 2. Data augmentation for original image.

augmentation values

resize scale=(0.5 0.5)
color jitter strength=(0.4, 0.4, 0.2, 0.1), p=0.8

random grayscale p=0.2
random horizontal flip p=0.5

Gaussian blur strength=(0.1,2), p=0.1
Solarize [14] p=0.2

Table 3. Data augmentation for downsampled image.

4.2. ImageNet-1K Classification

We use %TODO: ADD model name to carry out self-
supervised pretraining on ImageNet-1K training sets [10].
We then finetune our model on supervised classification
task with ImageNet-1K. Backbone of both models are ViT-
B [13]. Our results are compared with MAE, which is our
baseline. Top-1 accuracy with respect to training epochs
and relative wall time are given in Table 4. Our model
achieved higher accuracy with only about half of training
time.



Model Top1 Acc Epoch Wall time

MAE 83.3 1600 2.05×
DAC(ours) 83.5 600 1×

Table 4. Top 1 Accuracy on ImageNet-1K. 600 epoch of our model
has similar wall-time as 800 epoch MAE. Our model is both faster
and better than Vanilla MAE.

4.3. ImageNet-mini Classification

We also tested our model on classification with a smaller
dataset ImageNet-mini. See Table 5. Both pretrainig and
finetuning are on the same dataset. Backbone of both mod-
els is ViT-L [13].

Model Top1 Acc Epoch Wall time

MAE 42.5 800 1.08×
DAC(ours) 42.8 550 1×
DAC(ours) 44.8 800 1.45×

Table 5. Top 1 Accuracy on ImageNet-mini.

DAC finetuning accuracy with epoch is shown in Figure
2. Like MAE, DAC benefits from longer epoch training
[15].

Figure 2. Finetuning accuracy with respect to pretraining epoch.

4.4. Ablation

Ablation studies are done by finetuing a 300 epoch pre-
trained model on ImageNet-mini.

4.4.1 Data Augmentation

We tested different data augmentation strength during pre-
training. Results are in Table 6.

Augmentation Top1 Acc

resize only 38.9
resize + horizontal flip 39.2

resize + flip + color jitter + grayscale 39.5
resize (original image 0.08 - 1) 38.7

Table 6. Ablation on data augmentation on small image. Augmen-
tation on original image is just removing the resize. Value in the
bracket indicates resize and crop scale.

Generally, stronger data augmentation can produce bet-
ter finetuning accuracy. However, the scale of Resize and
crop will diminish the performance if the range is set too
broad.

4.4.2 Data Augmentation

We ablated the position of small image feature used for
contrastive learning. For downsampled image, asymmet-
ric features applies the decoder embedding output, which is
the encoder output with an additional linear layer to make
shapes match. Original image feature fed into contrastive
learning is the decoder output. Symmetric feature apply
both decoder outputs to pass through contrastive learning
network. The asymmetric input for contrastive learning can
not only speed up training but also improve model perfor-
mance, shown in Table 7.

Augmentation Top1 Acc

symmetric feature 39.4
asymmetric feature 39.5

Table 7. Ablation on the position of small image feature. Asym-
metric uses encoder output, while symmetric uses decoder output.

5. Conclusion

In this paper, we proposed a simple but work framework
called DAC. By using two novel augmentations, down-
sampling and masking, we map the original images to two
views lies in a lower dimension sample space, which can
accelerate the training speed and improve the model’s per-
formance. We also use an asymmetric framework and in-
troduce the reconstructive targets to the contrastive objec-
tives. Benefiting from the multitask objectives, we signif-
icantly surpasses the previous baselines in training speed.
Our DAC is a general idea and can help accelerate the ex-
isting contrastive learning, self-knowledge distillation and
reconstruction methods. We hope this will inspire future
work in related fields.
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