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Abstract

Many of the recent advances in machine learning have been inspired by min-max games, however many of
this methods lacks a solid math background telling about their dynamics. Whether these methods could always
converge, and which point they will converge to remains much unexplained. This paper propose a formulation
for a kind of games called hidden convex concave games, which is related to more general min-max games. The
paper proposed two main results:if the game is eequipped with a strictly convex concave objective function, then
the convergence to a von Neumann solution can be guaranteed by designing a Lyapunov function. Meanwhile,
stronger regularization can make convergence faster, but could also make the convergence point shift. Also some
implementation of this paper’s result on real datasets is provided in this review.

1. Intoduction

Many of the recent advances in machine learning have been inspired by min-max games, such as generative
adversarial networks (GAN) in image generation, and actor-critic algorithm in reinforcement learning [1, 4, 8].
These problems are often solved by applying gradient descent ascent (GDA) to some neural network based models.
As a main feature of neural networks, the optimization problems could always be non-convex non-concave, but
they are bounded by a convex-concave loss function. This kind of min-max game is defined as Hidden Convex-
Concave (HCC) games [3]. A formal mathematical definition of it could be: given F : RN → X ⊂ Rn and
G : RM → Y ⊂ Rm and a continuous convex-concave function L : X × Y → R, such that the min-max game is
minθ∈RN maxϕ∈RM L(F (θ),G(ϕ)).

Studying the dynamics of GDA algorithms in HCC games is critical, as there’s a bunch of underlying issues that
are related to unstable training of HCC games. The vanilla GAN requires heavily parameter tuning to make the
training process stable [1]. Meanwhile, the GDA algorithm may often fall into some meaningless saddle points,
which generates undesired solutions. WGAN solves part of the problems by making modifications to the loss
function, but it still needs some tricks like gradient clipping or adding extra regularization terms to stabilize the
training process [5], which still needs proper parameter tuning. Thus, it’s very useful to study the dynamics of
HCC games and find how to make GDA converge to a meaningful minima. This could shed light on the advances
of such min-max game based models by reducing the parameter tuning work with explainability.

This paper focused on finding appropriate initialization to guarantee stability of the dynamic system and the
relation between convergence and regularization.

2. Preliminary

2.1. Hidden Convex Concave Games

We will start with giving a formal definition of HCC games.



Definition 1 (HCC games) L : RN × RM → R is convex concave if for every y ∈ RN L(·, y) is convex and for
every x ∈ RM L(x, ·) is concave. Function L will be called strictly convex concave if it is convex concave and for
every x× y ∈ RN × RM either L(·, y) is strictly convex or L(x, ·) is strictly concave.

As the property of min-max games, we assume two players are involved in the game (solving the optimization
problem). The goal of one player is to minimize the objective function L, while the goal of the other player
is to maximize L. We assume the minimization player is equipped with n functions fi : Rni → R while the
maximization player is equipped with m functions gj : Rmj → R. In order to study the dynamic, we will assume
that fi, gj , L are all C2 functions, which means twice differentiable. The inputs θi ∈ Rni and ϕj ∈ Rmj are
grouped in two vectors

θ =
[
θ1 θ2 · · · θn

]⊤
F (θ) =

[
f1 (θ1) f2 (θ2) · · · fN (θn)

]⊤
ϕ =

[
ϕ1 ϕ2 · · · ϕm

]⊤
G(θ) =

[
g1 (ϕ1) g2 (ϕ2) · · · gM (ϕm)

]⊤
In the view of neural network, the ϕ and θ can be viewed as some high dimensional inputs of neural networks,

while F and G are two different networks.
Therefore, the hidden convex concave game is:

(θ∗,ϕ∗) = argmin
θ∈RN

argmax
ϕ∈RM

L(F (θ),G(ϕ)).

where N = Σn
i=1ni and N = Σm

i=1mi

2.2. Dynamics of HCC games

Definition 2 (Von Neumann Solutions) Given a convex concave function L, we denote the stationary points of
L as (global) Nash equilibria of the min-max game. The set of all equilibria is defined as von Neumann solutions
of L, denote as Solution(L).

When the game is defined on a convex compact set, existence of at least a solution is guaranteed by von
Neumann’s minimax theorem [2]. By choosing appropriate fi and gi, the convex compact setting can be obtained,
and thus in the following section we assume there’s Solution(L) is not empty. Then the gradient descent ascent
dynamic of HCC games can be defined as follow:

θ̇i = −∇θi
L(F (θ),G(ϕ)) = −∇θi

fi (θi)
∂L

∂fi
(F (θ),G(ϕ))

ϕ̇j = ∇ϕj
L(F (θ),G(ϕ)) = ∇ϕj

gj
(
ϕj

) ∂L

∂gj
(F (θ),G(ϕ))

(1)

2.3. Reparametrization

The stability of HCC games is guaranteed under appropriate initialization, which will be discussed later. Here
we’d like to make some definitions of the initialization and solutions of dynamic system first.

Lemma 3 (Unique Solution of Dynamic System) Let k : Rd → R be a C2 function. Let h : R → R be a C1

function and x(t) denote the unique solution of the dynamical system Σ1. Then the unique solution for dynamical
system Σ2 is z(t) = x

(∫ t
0 h(s)ds

)
{

ẋ = ∇k(x)

x(0) = xinit

}
: Σ1

{
ż = h(t)∇k(z)

z(0) = xinit

}
: Σ2



Figure 1. Relation between initialization and GDA trajectory.

See Appendix A for proof.
By choosing h(t) = −∂L(F (t),G(t))/∂fi and h(t) = ∂L(F (t),G(t))/∂gj respectively, we can connect the

dynamics of each θi and ϕj under Equation (1) to gradient ascent on fi and gj . Applying Lemma 1, we get
that trajectories of θi and ϕj under Equation (1) are restricted to be subsets of the corresponding gradient ascent
trajectories with the same initializations. In fact, Lemma 1 guarantees the monotomicity of GDA trajectories. As
shown in Figure 1 θi(t) can not escape the purple section if it is initialized at (a) neither the orange section if it is
initialiazed at (f). This limits the attainable values that fi(t) and gj(t) can take for a specific initialization.

Definition 4 (Image of Dynamic System) For each initialization x(0) of Σ1, Imk(x(0)) is the image of k ◦ x :

R → R.

Applying Definition 2 in Figure 1, Imfi (θi(0)) = (fi(−2), fi(−1)) if θi is initialized at (c). Additionally,
observe that in each colored section fi (θi(t)) uniquely identifies θi(t). Generally, even in the case that θi are
vectors, Lemma 1 implies that for a given θi(0), fi (θi(t)) uniquely identifies θi(t). As a result we get that a new
dynamical system involving only fi, gj and initializations.

Theorem 5 (GDA without Intermediate States) For each initialization (θ(0),ϕ(0)) of Equation (1), there are
C1 functions Xθi(0), Xϕj(0)

such that θi(t) = Xθi(0) (fi(t)) and ϕj(t) = Xϕj(0)
(gj(t)). If (θ(t),ϕ(t)) satisfy

Equation (1) then fi(t) = fi (θi(t)) and gj(t) = gj
(
ϕj(t)

)
satisfy

ḟi = −
∥∥∇θi

fi
(
Xθi(0) (fi)

)∥∥2 ∂L

∂fi
(F ,G)

ġj =
∥∥∥∇ϕj

gj

(
Xϕj(0)

(gj)
)∥∥∥2 ∂L

∂gj
(F ,G)

(2)

The proof is given in Appendix B.
By determining the ranges of fi and gj , an initialization clearly dictates if a von Neumann solution is attainable.

In Figure 1 for example, any point of the pink, orange or blue colored section like (e), (f) or (g) can not converge
to a von Neumann solution with fi(θi) = f∗

i . The notion of safety captures which initializations can converge to
a given element of Solution(L).

Definition 6 (Safe Initialition) The initialization (θ(0),ϕ(0)) is called safe for a (p, q) ∈ Solution (L) if ϕi(0)

and θj(0) are not stationary points of fi and gj respectively and pi ∈ Imfi (θi(0)) and qj ∈ Imgj

(
ϕj(0)

)
.



2.4. Stability of Dynamic Systems

Let f : D → Rn be a locally Lipschitz map from a domain D ⊂ Rn to Rn. We consider dynamical systems of
the form

ẋ = f(x) (⋆)

A point x̄ for which f(x̄) = 0 is called a fixed point. We will be interested in the following notions of stability
for the fixed point points of Equation (⋆).

Definition 7 (Stability properties [7]) The fixed point x = 0 of Equation ( ⋆ ) is
stable if, for each ϵ > 0, there is a δ = δ(ϵ) > 0 such that

∥x(0)∥ < δ =⇒ ∥x(t)∥ < ϵ ∀t ≥ 0

unstable if it is not stable
asymptotically stable if it is stable and δ can be chosen such that

∥x(0)∥ < δ =⇒ lim
t→∞

x(t) = 0

Lyapunov Function playes an important role in determining the stability of fixed points of a dynamic system.

Theorem 8 (Lyapunov Theorem [7]) Let x = 0 be a fixed point point for Equation ( ⋆ ) and D ⊂ Rn be a
domain containing x = 0. Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}
V̇ (x) ≤ 0 in D

then x = 0 is stable. Moreover if
V̇ (x) < 0 in D − {0}

then x = 0 is asymptotically stable.

Besides, some notions of stability will be used in the following sections. We call an equilibrium x∗ of an
autonomous dynamical system ẋ = D(x(t)) stable if for every neighborhood U of x∗ there is a neighborhood
V of x∗ such that if x(0) ∈ V then x(t) ∈ U for all t ≥ 0. We call a set S asymptotically stable if there exists
a neighborhood R such that for any initialization x(0) ∈ R,x(t) approaches S as t → +∞. If R is the whole
space the set globally asymptotically stable.

3. Lyapunov Function for GDA of HCC Games

3.1. General Case

The section will be about designing a Lyapunov Function for Equation (2).

Lemma 9 If L is convex concave and (ϕ(0),θ(0)) is a safe for (p, q) ∈ Solution (L), then the following quantity
is non-increasing under the dynamics of Equation (3):

H(F ,G) =
N∑
i=1

∫ fi

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz +
M∑
j=1

∫ gj

qj

z − qj∥∥∥∇gj

(
Xϕj(0)

(z)
)∥∥∥2 dz



See Appendix C for proof.

Ḣ ≤ L(p,G)− L(F ,G) + L(F ,G)− L(F , q)

≤ L(p,G)− L(p, q) + L(p, q)− L(F , q) ≤ 0

The last inequality holds since (p, q) ∈ Solution(L).
If (p, q) is a saddle point of L then L(p,G) ≤ L(p, q) ≤ L(F , q)

Theorem 10 If L is convex concave and (ϕ(0),θ(0)) is a safe for (p, q) ∈ Solution(L), then (p, q) is stable for
Equation (2).

See Appendix D for proof.

Theorem 11 (Safety properties of Sigmoid Functions) If fi and gj are sigmoid functions and L is convex con-
cave and there is a(ϕ(0),θ(0)) that is safe for (p, q) ∈ Solution(L), then

(
F−1(p),G−1(q)

)
is stable for

Equation (1).

See Appendix 11 for Proof.
With these theorems, the stability of such a dynamic system is guaranteed with a pair (p, q) in the solution space.

Theorem 12 (Bound of HCC games) Let (p, q) ∈ Solution(L). Let Rfi and Rgj be the set of regular values of
fi and gj respectively. Assume that there is a ξ > 0 such that [pi − ξ, pi + ξ] ⊆ Rfi and [qj − ξ, qj + ξ] ⊆ Rgj .
Define

r(t) = ∥F (θ(t))− p∥2 + ∥G(ϕ(t))− q∥2.

If fi and gj are proper functions, then for every ϵ > 0, there is an δ > 0 such that

r(0) < δ =⇒ ∀t ≥ 0 : r(t) < ϵ.

See Appendix F for the proof.
This theorem provides that the dynamic system over time is bounded. However, it does not guarantee convergence

to a certain point. Thus, we will further discuss L as a strictly convex concave function.

3.2. Hidden Strictly Convex Concave Games

Here we continue to study properties of hidden strictly convex concave games with L as a strictly convex
concave function.

Lemma 13 (Locally Asymptotically Stability of Strictly Convex Concave Functions) Let L be strictly convex
concave and Z ⊂ Solution(L) is the non empty set of equilbria of L for which (θ(0),ϕ(0)) is safe. Then Z is
locally asymptotically stable for Equation (2).

See Appendix G for proof.

Theorem 14 (Convergence of Hidden Strictly Convex Concave Games) Let L be strictly convex concave and
Z ⊂ Solution(L) is the non empty set of equilbria of L for which (θ(0),ϕ(0)) is safe. Under the dynamics of
Equation (1)(F (θ(t)),G(θ(t))) converges to a point in Z as t → ∞.

The theorem above guarantees convergence to a von Neumann solution for all initializations that are safe for at
least one element of Solution(L). However, this is not the same as global asymptotic stability. To get even stronger
guarantees, we can assume that all initializations are safe. In this case it is straightforward to get a global asymp-
totic stability result:



Corollary 15 Let L be strictly convex concave and assume that all intitializations are safe for at least one element
of Solution (L). The following set is globally asymptotically stable for continuous GDA dynamics.

{(θ∗,ϕ∗) ∈ Rn × Rm : (F (θ∗) , G (ϕ∗)) ∈ Solution(L)}

3.3. Convergence via Regularization

Regularization has become a widely used technique in neural networks and also in GANs [1, 4]. It could also
have impact on HCC games. Assume a utility L(x,y) that is convex concave but not strictly. Here we will propose
a modified utility L′ that is strictly convex strictly concave. Specifically we will choose

L′(x,y) = L(x,y) +
λ

2
∥x∥2 − λ

2
∥y∥2

The choice of the parameter λ captures the trade-off between convergence to the original equilibrium of L and
convergence speed. On the one hand, invoking the implicit function theorem, we get that for small λ the equilibria
of L are not significantly perturbed.

Theorem 16 (Equilibria of Invertible Hessian) If L is a convex concave function with invertible Hessians at all
its equilibria, then for each ϵ > 0 there is a λ > 0 such that L′ has equilibria that are ϵ-close to the ones of L.

See Appendix I for proof.
Note that invertibility of the Hessian means that L must have a unique equilibrium. On the other hand increasing

λ increases the rate of convergence of safe initializations to the perturbed equilibrium

Theorem 17 (Bounded by Regularization) Let (θ(0),ϕ(0)) be a safe initialization for the unique equilibrium
of L′(p, q). If

r(t) = ∥F (θ(t))− p∥2 + ∥G(ϕ(t))− q∥2

then there are initialization dependent constants c0, c1 > 0 such that r(t) ≤ c0 exp (−λc1t).

See Appendix J for proof.
This theorem guarantees that the dynamic is bounded by regularization

4. Applications

4.1. Hidden strictly convex-concave games

A famous example of HCC game is GAN. The conclusion of the paper can be applied to all variants of GANs
[1, 4, 8]. In the vanilla GAN architecture, as it is commonly referred, our goal is to obtain a generator, such that it
can generate a distribution pG that is close to an input data distribution pdata. . To find such a generator function,
we can use a discriminator D that judge if an input is real or fake. For the case of a discrete pdata over a set N , the
minimax problem of GAN is the following:

min
pG(x)≥0,

∑
x∈N pG(x)=1

max
D∈(0,1)|N|

V (G,D) =
∑
x∈N

pdata (x) log(D(x)) +
∑
x∈N

pG(x) log(1−D(x))

The problem above can be formulated as a constrained strictly convex-concave hidden game. On the one hand,
for a fixed discriminator D∗, the V (G,D∗) is linear over the pG(x). On the other hand, for a fixed generator
G∗, V (G∗, D) is strongly-concave. We can implement the inequality constraints on both the generator probabili-
ties and discriminator using sigmoid activations. For the equality constraint

∑
x∈N pG(x) = 1 we can introduce

a Langrange multiplier. Theretically, as given in the paper, when having effectively removed the constraints, we



Figure 2. Theoretical l2 distance and Lyapunov function to the equilibria.

Figure 3. l2 distance on MNIST.

can see in Figure 2, the dynamics of Equation (1) converge to the unique equilibrium of the game. Meanwhile, the
dynamic of GAN on MNIST dataset is implemented1. An approximation is done to obtain r(t), as pdata is hard to
obtain, where ∥G(ϕ(t))− q∥ term is approximated with ∥D(G(x))∥. See Figure 3 for the l2 distance on MNIST.
The result is similar to the theoretical one that l2 distance does not converge monotonically to 0 (left on Figure 2).

4.2. Hidden Convex Concave Games with Regularization

Convergence with respect to regularization strength for vanilla GAN is given in Figure 4. Generally a larger
regularization strength gives a faster convergence speed. However, a faster convergence cannot always guarantee
converging to a von Neumann solution. Figure 5,6 shows that the generation with larger regularization could fail,
indicating not converging to a meaningful solution.

Another example of GAN is WGAN [1]. One of the contributions of is to show that WGANs trained with
Stochastic GDA can learn the parameters of Gaussian distributions whose samples are transformed by non-linear
activation functions.The original WGAN formulation has a Lipschitz constraint in the discriminator function
which is done by weight clipping. However, model performance is very sensitive to the weight clipping ra-
tio. Thus, [5] replaced this constraint with a quadratic regularizer. The min-max problem for the case of one-
dimensional Gaussian N

(
0, α2

∗
)

and linear discriminator Dv(x) = v⊤x with x2 activation is:

min
α∈R

max
v∈R

VWGAN (Gα, Dv) = EX∼pdata [D(X)]− EX∼pG [D(X)]− v2/2

= Ex∼N (0,α2
∗)

2 [vx]− Ex∼N (0,α2
∗)

2 [vx]− v2/2

=
(
α2
∗ − α2

)
v − v2/2

1See https://github.com/zxp46/EECS559-Final-Project for the code.



Figure 4. Convergence and regularization strength.

Figure 5. Generation samples for λ = 0. Figure 6. Generation samples for λ = 0.1.

Observe that VWGAN is not convex-concave but it can posed as a hidden strictly convex-concave game with
G(α) =

(
α2
∗ − α2

)
and F (v) = v. When computing expectations analytically without sampling, Theorem

14 still guarantees convergence.

5. Discussion and Conclusion

This paper discusses about the dynamic of HCC games, where the main contribution is proposing that if it
is a hidden strictly convex concave game, then the convergence to a meaningful von Neumann solution can be
guaranteed by designing a Lyapunov function. Meanwhile, stronger regularization can make convergence faster,
but could also make the convergence point shift. For more general cases, as also discussed in [6], the convergence
to a meaningful point is not definite. Another limitation of this paper is that the Lyapunov function is hard to
implement with code, as the distribution of generated samples and original samples are difficult to obtain. But
overall, this paper shed light on formulating a better theoretical background for some zero-sum games.
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A. Proof of Lemma 3

Proof.

z(0) = x

(∫ 0

0
h(s)ds

)
= x(0) = xinit

ż = ẋ

(∫ t

0
h(s)ds

)
×

d
[∫ t

0 h(s)ds
]

dt

= ∇k

(
x

(∫ t

0
h(s)ds

))
h(t) = ∇k(z)h(t)

gives a unique solution for Σ2

B. Proof of Theorem 5

Proof. Let us first study a simpler dynamical system (Σ∗) with unique solution of γθi(0)(t).

(Σ∗) ≡
{

ż = ∇fi(z)

z(0) = θi(0)

}
It is easy to observe that:

ḟi = ∇f(z)ż = ∥∇f(z)∥2

If θi(0) is a stationary point of fi then the trajectory of z is a single point. But the trajectory of θi under the
dynamics of Equation (1) is also a single point so we can pick the following function

Xθi(0) (fi) = θi(0).

On the other hand if θi(0) is not a stationary point of fi, fi continuously increases along the trajectory of (Σ∗).
Therefore Aθi(0)(t) = fi

(
γθi(0)(t)

)
is an increasing function and therefore invertible. Let us call A−1

θi(0)
(fi) the

inverse. Let’s recall now the θi part of the dynamical system of interest Equation (1)

θ̇i = −∇θi
fi (θi)

∂L

∂fi
(F (θ),G(ϕ))

initialized at θi(0). Applying Lemma 1 for the first equation with

h(t) = − ∂L

∂fi
(F (θ(t)),G(ϕ(t)))

we have that under the GDA dynamics:

θi(t) = γθi(0)

(∫ t

0
h(s)ds

)
(P )

Thus it holds

fi (θi(t)) = f

(
γθi(0)

(∫ t

0
h(s)ds

))
= Aθi(0)

(∫ t

0
h(s)ds

)
or equivalently ∫ t

0
h(s)ds = A−1

θi(0)
(fi (θi(t)))



Plugging in back to Equation (P)
θi(t) = γθi(0)

(
A−1

θi(0)
(fi (θi(t)))

)
Therefore we can pick

Xθi(0) (fi) = γθi(0)

(
A−1

θi(0)
(fi)

)
which is C1 as composition of C1 functions. We can perform an equivalent analysis for ϕj(0) and gj to pick C1

function Xϕj(0)
. Let us now track the time derivative of fi (θi) and gj

(
ϕj

)
ḟi = ∇θi

fi (θi) θ̇i = ∥∇θi
fi (θi)∥2

∂L

∂fi
(F ,G)

ġj = ∇ϕj
gj

(
ϕj

)
ϕ̇j =

∥∥∥∇ϕj
gj

(
ϕj

)∥∥∥2 ∂L

∂gj
(F ,G)

We can now replace θi = Xθ,(0) (fi) and ϕj = Xϕ·(0)
(gi) to get the equations required.

C. Proof for Lemma 9

Proof. Simple substitution gets us the following

Ḣ = −
N∑
i=1

(fi − pi)
∂L

∂fi
(F ,G) +

M∑
j=1

(gj − qj)
∂L

∂gj
(F ,G)

= −⟨F − p,∇FL(F ,G)⟩+ ⟨G− q,∇GL(F ,G)⟩

For convex L(·,G) and concave L(F , ·), we have according to the definition:

−⟨F − p,∇FL(F ,G)⟩ ≤ L(p,G)− L(F ,G)

⟨G− q,∇GL(F ,G) ≤ L(F ,G)− L(F , q)

D. Proof for Theorem 10

Proof. Leveraging Lemma 2, there is a function H which is well defined in D = {Imfi (θi(0))}Ni=1×
{
Imgj

(
ϕj(0)

)}M

j=1

and in this domain Ḣ ≤ 0. Given the safety conditions we know that (p, q) ∈ D. Observe that for the proposed
function, it holds that H(p, q) = 0. Also for each fi and gj term in H we know that it has its minimum of value
0 at the corresponding pi and qj . We can deduce this by taking the derivative of each term to study its monotonic-
ity. For example, the fi terms are strictly increasing in fi > pi and strictly decreasing in fi < pi. Thus for all
D−{(p, q)}, H > 0. Applying Theorem 8 for the continuously differentiable H we have that (p, q) is stable for
Equation (2).

E. Proof of Theorem 11

Proof. Firstly, we recall the property of sigmoid’s gradient:

dσ(x)

dx
= σ(x)(1− σ(x)).

Thus the transformed dynamical system in the operator space can be written as:

(T ) :=

{
ḟi = −f2

i (1− fi)
2 ∂L
∂fi

(F ,G)

ġj = g2j (1− gj)
2 ∂L
∂gj

(F ,G)

}



Notice that
1. The dynamical system (T ) in the operator space is independent of the initial conditions. In fact, the dynamical

system of (T ) and the one of Equation (1), called (Σ) for short, are diffeomorphic for all initializations, not just
a specific trajectory.

2. Since (θ(0),ϕ(0)) is safe, using Theorem 2 we get that (p, q) is stable for (T ). We would like to prove that
for every open neighborhood V of

(
F−1(p),G−1(q)

)
there exists an open neighborhood U of

(
F−1(p),G−1(q)

)
such that

(θinit ,ϕinit ) ∈ U =⇒ ∀t ≥ 0 : (θ(t),ϕ(t)) ∈ V.

Applying the diffeomorphism γ = γΣ→T between GDA dynamics of (Σ) and (T ), γ(V ) is an open neighborhood
of (p, q) since V is open and γ

((
F−1(p),G−1(q)

))
≡ (p, q) ∈ γ(V ). By Item 2 , since (p, q) is stable for (T )

there is an open neighborhood Ũ of (p, q) such that:

(F init ,Ginit ) ∈ Ũ =⇒ ∀t ≥ 0 : (F (t),G(t)) ∈ γ(V )

or equivalently
γ (θinit ,ϕinit ) ∈ Ũ =⇒ ∀t ≥ 0 : γ(θ(t),ϕ(t)) ∈ γ(V )

Indeed, using the inverse diffeomorphism γ−1, we can establish that for U = γ−1(Ũ) it holds that

(θinit ,ϕinit ) ∈ U =⇒ ∀t ≥ 0 : (θ(t),ϕ(t)) ∈ V

F. Proof of Theorem 12

Proof. Let us define the following sets

∀i ∈ [n] : Ai =
{

θi ∈ Rni

∀j ∈ [m] : Bj =

{
fi (θi) ∈ [pi − ξ, pi + ξ]}
ϕj ∈ Rmj

gj
(
ϕj

)
∈ [qj − ξ, qj + ξ]

}
Since fi and gj are proper Ai and Bj are compact sets. Thus, the continuous functions ∥∇fi (θi)∥2 and

∥∥∇gj
(
ϕj

)∥∥2
have a minimum and maximum value on Ai and Bj respectively. Let us call Kfi and Kgj the maxima and κfi
and κgj the minima. Observe that the minima and maxima must be all greater than zero since [pi − ξ, pi + ξ] and
[qj − ξ, qj + ξ] are regular values. Let us define

κ = min

{
min
1≤i≤n

κfi , min
1≤j≤m

κgj

}
K = max

{
max
1≤i≤n

Kfi, max
1≤j≤m

Kgj

}
where K ≥ κ > 0 as we discussed. Let us create the following set

S =
{
(θ,ϕ) ∈ RN × RM | ∀i ∈ [n] : θi ∈ Ai, ∀j ∈ [m] : ϕj ∈ Bj

}
We can prove that every (θ,ϕ) ∈ S is a safe initialization for (p, q). Of course, every θi and ϕj are not stationary
points of fi and gj respectively. We also need to prove that the equilibrium (p, q) is feasible. We will prove
this by contradiction. Let there be a (θ,ϕ) ∈ S such that (p, q) is not feasible. Without loss of generality
we can assume that there is an i ∈ [n] such that pi /∈ Imfi (θi). The case for the gj is symmetrical. Along
the gradient ascent trajectory of fi with initialization at θi, observe that fi(t) cannot attain an infimum or a
supremum in [pi − ξ, pi + ξ] because there are no stationary points of fi in Ai. Observe also that at initialization



fi (θi) ∈ [pi − ξ, pi + ξ]. Thus Let us pick an initialization (θ(0), ϕ(0)) such that r(0) ≤ ξ2. It is clear that
(θ(0), ϕ(0)) ∈ S and so it is safe for (p, q). We can do the same steps as in Theorem 2 to prove that the function
H(F ,G) below does not increase under the dynamics of Equation (1):

H(F ,G) =
N∑
i=1

∫ fi

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz +
M∑
j=1

∫ gj

qj

z − qj∥∥∥∇gj

(
Xϕj(0)

(z)
)∥∥∥2 dz

Observe that since (θ(0),ϕ(0)) ∈ S we have that the interval between pi and fi (θi(0)) belongs in [pi − ξ, pi + ξ]

and ∥∇fi(·)∥2 ≥ κ in this interval. Thus we can write

(fi (θi(0))− pi)
2

2κ
≥

∫ fi(θi(0))

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz

Repeating the same argument for all fi and gj we have that

r(0)

2κ
≥ H(F (θ(0)),G(ϕ(0))) ≥ H(F (θ(t)),G(ϕ(t)))

Let us pick r(0) < min
{
ξ2, ξ2 κ

K

}
= ξ2 κ

K . We already know that trajectories start in S. We will prove that they
also remain in S. We will do this by contradiction. If a trajectory escaped S, then without loss of generality this
means that there is at least an i ∈ [n] such that at some t > 0, fi (θi(t)) /∈ [pi − ξ, pi + ξ]. The case of gj is
similar. Clearly we have that∫ fi(θi(t))

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz ≥ min

{∫ pi−ξ

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz,

∫ pi+ξ

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz

}

As above, we have that the gradients in the integrals of the right hand side are less or equal than K so∫ fi(θi(t))

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz ≥ ξ2

2K
.

The terms of H are all non-negative so we have that

r(0)

2κ
≥ H(F (θ(t)),G(ϕ(t))) ≥

∫ fi(θi(t))

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz ≥ ξ2

2K
.

But r(0) < ξ2 κ
K , a contradiction. So the trajectories will stay in S. We can then write∫ fi(θi(t))

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz ≥ (fi (θi(t))− pi)
2

2K
.

Repeating the same argument for all fi and gj we have that

r(0)

2κ
≥ H(F (θ(t)),G(ϕ(t))) ≥ r(t)

2K
.

For every ϵ > 0, there is a positive δ =
min{ζ2,ϵ}κ

K such that

r(0) < δ =⇒ r(t) < ϵ.



G. Proof of Lemma 13

Proof. Pick a point (p, q) ∈ Z. Since our initialization is safe for this saddle point, we can construct the H

function as in Theorem 5 and prove that it has the following property

Ḣ ≤ 0 in D = {Imfi (θi(0))}Ni=1 ×
{
Imgj

(
ϕj(0)

)}M

j=1

If (F (θ(0)),G(ϕ(0))) = (p, q) then the theorem holds trivially. Otherwise, take a ball B centered at the equili-
birum with a small enough radius such that it is contained in the interior of D.

H0 = min
(F ,G)∈∂B

H(F ,G)

Ω = {(F ,G) ∈ B | H(F ,G) ≤ H0/2}

We know that in both of the cases H0 > 0 from Theorem 2 .
Since Ḣ ≤ 0, starting in Ω, it implies that H(F (t),G(t)) ≤ H0 for t ≥ 0, so Ω is forward invariant. Since

Ω ⊂ D we know that it is bounded. Ω is closed since it is a sublevel set of a continuous function. Notice that
the restriction of Ω on B does not affect the above properties since Ω is in the interior of B. Thus Ω is a compact
forward invariant set, satisfying the requirement of Theorem 9

Let E = {(F ,G) ∈ B | Ḣ(F ,G) = 0}. Without loss of generality we can assume that L(·, q) is strictly
convex as the case of L(p, ·) being strictly concave is similar. In the following inequality

Ḣ ≤ L(p,G)− L(p, q) + L(p, q)− L(F , q) ≤ 0

we know that L(p,G) − L(p, q) ≤ 0 and L(p, q) − L(F , q) ≤ 0. So Ḣ = 0 implies L(p,G) = L(p, q) =

L(F , q). By the strict convexity of L(·, q) we know that this means that F = p. Let M be the largest invariant
set inside E. By the properties of M being invariant subset of E we have

(F (0),G(0)) ∈ M =⇒ ∀t : F (t) = p and L(p,G(t)) = L(p, q)

Taking the time derivatives on each of the constant quantities, they should be zero.

ḟi = 0 ⇒ ∀i ∈ [N ] :
∥∥∇θi

fi
(
Xθi(0) (pi)

)∥∥2 ∂L

∂fi
(p,G) = 0

L(p, Ġ(t)) = 0 ⇒
M∑
j=1

∥∥∥∇ϕj
gj

(
Xϕj(0)

(gj)
)∥∥∥2 [ ∂L

∂gj
(p,G)

]2
= 0

We know that
∥∥∇θi

fi
(
Xθi(0) (pi)

)∥∥ ̸= 0 by the safety conditions and that
∥∥∥∇ϕj

gj

(
Xϕj(0)

(gj)
)∥∥∥2 ̸= 0 inside

D again by safety conditions. This implies

∀i ∈ [N ] :
∂L

∂fi
(p,G) = 0

∀j ∈ [M ] :
∂L

∂gj
(p,G) = 0

Thus M contains only stationary points of L so M ⊆ Solution(L). In addition M ⊆ D so only stationary
points of L for which the initialization is safe are allowed so M ⊆ Z. Applying Theorem 9 we have that for any
initialization of Equation (3) inside Ω, as t → ∞(F (t),G(t)) approaches M and thus Z is locally asymptotically
stable for Equation (3).



H. Proof of Theorem 14

Proof. Again let’s pick a point (p, q) ∈ Z. Since our initialization is safe for this saddle point, we can construct
the H function as in Theorem 5 and prove that it has the following property

Ḣ ≤ 0 in D = {Imfi (θi(0))}Ni=1 ×
{
Imgj

(
ϕj(0)

)}M

j=1

If (F (θ(0)),G(ϕ(0))) = (p, q) then the theorem holds trivially. Otherwise define

H0 = H(F (θ(0)),G(ϕ(0)))

Ω = {(F ,G) ∈ D | H(F ,G) ≤ H0}

where we know that H0 > 0 from Theorem 2. Let us assume that indeed Ω is in the interior of D. Then, applying
the same argumentation as in Lemma 3 combined with Theorem 2, all fixed points in Z are stable. So applying
Theorem 10 we get that the trajectory initialized at (F (θ(0)),G(ϕ(0))) ∈ Ω converges to a point in Z. It remains
to prove our assertion about the set Ω : Claim 1. Ω is in the interior of D. Proof. We will argue that as (F ,G)

approaches the boundary of D, the value of H should become unbounded. If this is true then for the finite upper
bound of H0,Ω should have no points close to the boundary of H and thus it should be in the interior.

As (F ,G) approach the boundary of D, at least one of the variables fi or gj approaches the endpoints points
of Imfi (θi(0)) or Imgj

(
ϕj(0)

)
respectively. We will study the case of fi since the case of gj is symmetrical.

The endpoint fis can be either the supremum or the infimum of the gradient ascent trajectory on fi or ±∞ if they
do not exist. Let fis be the supremum or ∞ depending on if the former exists. We can take the gradient ascent
dynamics and apply Lemma 3 to get

ḟi =
∥∥∇θi

fi
(
Xθi(0) (fi)

)∥∥2
We know that fi (θi(t)) goes to fis when initialized at fi (θi(0)). Let us define the following function

a (fi) =

∫ fi

pi

1∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz

Observe that ȧ = 1, thus limt→∞ a (fi(t)) = ∞. In other words

lim
t→∞

∫ fi(t)

pi

1∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz =

∫ fis

pi

1∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz = ∞

Symmetrically if fis is the infimum or −∞, then the limit above would be −∞. In either case

fi → fis =⇒
∫ fi

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz → ∞

For the last step it is important to note that pi is not at the boundary of D based on the safety conditions. Therefore
as (F ,G) approach the boundary of D in the dynamics of Equation (3), at least one of the terms of H goes to
infinity. Also note that all the terms of H are individually nonnegative so no matter what the other variables in
(F ,G) are doing they cannot stop H → ∞.

I. Proof of Theorem 16

Proof. For any choice of λ > 0 we have that L′ is strictly convex strictly concave so the KKT conditions are
sufficient to determine its equilibria.

∂L(x,y)

∂xi
+ λxi = 0

∂L(x,y)

∂yj
− λyj = 0



We can view the above set of constraints as a single vector constraint r(λ,x,y) = 0. Note that by assumption
of the Hessians being invertible at all equilibria, L has a unique equilibrium (x∗,y∗). Clearly we have that
r (0,x∗,y∗) = 0. Observe that for the Jacobian of r at (0,x∗,y∗) with respect to (x,y) we have that

D(x,y)r (0,x
∗,y∗) = ∇2L (x∗,y∗)

and thus it is invertible. Invoking the Implicit function Theorem, there is a differentiable function g, defined in a
small enough neighborhood of 0 , that takes a λ and returns g(λ) = (x(λ),y(λ)) such that r(λ, g(λ)) = 0. Thus
for a small enough λ, we have that g returns the corresponding equilibria of L′. By continuity of g, for all ϵ there
is a δ > 0

∀0 < λ < δ : ∥x(λ)− x(0)∥2 + ∥y(λ)− y(0)∥2 ≤ ϵ2

But (x(0),y(0)) = (x∗,y∗) so the equilbrium of L′ has an ϵ-close equilibrium of L for λ < δ. By strict convexity
strict concavity of L′, it has a unique equilibrium as well. So the equilibria of L′ and L are ϵ-close to each other.

J. Proof of Theorem 17

Proof. Following the same analysis with the strict convex concave analysis of the previous section, if (F (θ(0)),G(ϕ(0))) =

(p, q) then the theorem holds trivially. Otherwise, since our initialization is safe for (p, q), we can construct
the H function as in Theorem 2 and prove that it has the following property in D = {Imfi (θi(0))}Ni=1 ×{
Imgj

(
ϕj(0)

)}M

j=1

Ḣ ≤ L′(p,G)− L′(p, q) + L′(p, q)− L′(F , q)

≤ −λ

2

(
∥F (θ(t))− p∥2 + ∥G(ϕ(t))− q∥2

)
≤ −λ

2
r(t)

Where the second step follows from L′(p, ·) being λ strongly concave and L′(·, q) being λ strongly convex and
q,p being the corresponding optima of these functions since (p, q) is an equilibrium. Let us define

H0 = H(F (θ(0)),G(ϕ(0)))

Ω = {(F ,G) ∈ D | H(F ,G) ≤ H0}

where we know that H0 > 0 from Theorem 2. Additionally, we can apply Claim 1 even in the new dynamics,
so Ω is in the interior of D. Since Ḣ ≤ 0, starting in Ω, it implies that H(F (θ(t)),G(ϕ(t))) ≤ H0 for t ≥ 0,
so (F (t),G(t)) stays in Ω. Additionally, Ω is closed since it is a sublevel set of a continuous function. Notice
that the restriction of Ω on D does not affect the above properties since Ω is in the interior of D. Thus Ω is a
compact forward invariant set. For a safe initialization (θ(0),ϕ(0)), the following continuous functions must have
a minimum and maximum value on Ω respectively.

Kfi ≥
∥∥∇fi

(
Xθi(0)(·)

)∥∥2 ≥ κfi

Kgj ≥
∥∥∥∇gj

(
Xϕj(0)(·)

)∥∥∥2 ≥ κgj

Observe that the minima and maxima must be all greater than zero, since both
∥∥∥∇ϕj

gj

(
Xϕj(0)

(g(t))
)∥∥∥,

∥∥∥∇ϕj
fi
(
Xϕi(0)

(f(t))
)∥∥∥cannot

go to 0 as this happens only at the boundaries of D which are outside Ω. Let us define

κ = min

{
min
1≤i≤n

κfi , min
1≤j≤m

κgj

}
K = max

{
max
1≤i≤n

Kfi′ max
1≤j≤m

Kgj

}



Observe that K ≥
∥∥∇fi

(
Xθi(0)(·)

)∥∥2 ≥ κ in this interval. Thus we can write

(fi (θi(t))− pi)
2

2κ
≥

∫ fi(θi(t))

pi

z − pi∥∥∇fi
(
Xθi(0)(z)

)∥∥2 dz ≥ (fi (θi(t))− pi)
2

2K

Repeating the same argument for all fi and gj we have that

r(t)

2κ
≥ H(F (θ(t)),G(ϕ(t))) ≥ r(t)

2K

Thus we can extend our analysis

Ḣ ≤ −λr(t) ≤ −2κλ

2
H(t) ⇒ H(t) ≤ H0e

−λκt ⇒ r(t) ≤ 2×K ×H0e
−λκt
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