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Abstract

In recent years, the field of self-supervised learn-
ing has seen a surge in the development of mask
models, which have been demonstrated to have
strong performance on downstream tasks and effi-
cient training. To better understand the underlying
mechanism behind these models’ success, we pro-
pose a theoretical framework for mask modeling.
By treating mask modeling as a low-rank recovery
task, we demonstrate that it is a parametric version
of Spectral Clustering and the reconstruction loss
conforms to the form of Spectral Contrastive loss.
This means that mask modeling can be understood
as a token level Contrastive Learning. Our frame-
work can be used to explain why optimal masking
ratios vary among modalities and why there is a
large gap between linear probing and finetuning
performance for mask models. Additionally, our
analysis suggests that the success of mask models
depends on the model architecture, where a token
mixing layer and layer normalization are crucial
for the success of mask models. Our framework
has the potential to be a step stone for future algo-
rithm and network architecture design in the field
of self-supervised learning.

1. Introduction

With the rapid-growth of deep learning and its increasing de-
mand for data, self-supervised learning arises as a research
topic in-demand. Among the successful self-supervised
learning models, mask models have received significant
attention for their strong downstream performance and effi-
cient training (He et al., 2022; Xie et al., 2021; Devlin et al.,
2018; Bao et al., 2022; Liu et al., 2019; Tong et al., 2022;
Huang et al., 2022; Bachmann et al., 2022). However, mask-
modelling has long been regarded as an engineering trick,
and its underlying mechanism remains poorly understood.
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Empirically, we have observed that Mask Image Modelling
(MIM) leads to varying performance improvements on dif-
ferent downstream tasks compared to previous baselines (He
et al., 2022). Specifically, MIM has been found to perform
better on fine-grained tasks such as semantic segmentation
and object detection, compared to classification tasks. This
phenomenon leads us to hypothesize that the representation
learned by MIM models is fundamentally similar to that of
image segmentation (clustering).

In this work, we propose a theoretical analysis of mask
modelling by treating it as a low-rank recovery (LRR) task.
Our analysis further demonstrates that the reconstruction
loss can be rewritten as a Contrastive loss (Davenport &
Romberg, 2016).

The LRR problem aims to find the low-rank approxima-
tion of a given matrix, and has been used as a method for
subspace clustering (Patel et al., 2015). Additionally, as
the optimal solution of the LRR problem is a combination
of leading eigenvectors, we are naturally led to Spectral
Clustering, which also utilizes leading eigenvectors (Shi &
Malik, 2000; Ng et al., 2001). Our results show that MIM
approximates the Spectral Clustering features of an image-
related graph, where each node represents a patch of the
image.

By viewing the Masked Image Model (MIM) as a parametric
version of Spectral Clustering, we can rewrite the reconstruc-
tion loss of mask models in the form of Spectral Contrastive
loss on the token level (HaoChen et al., 2021).. This allows
MIM to be viewed as a token-wise Contrastive Learning
method, which attracts similar patches while repelling dis-
similar ones, resulting in smaller distances within clusters
and larger distances between clusters. However, there are
some key differences between mask models and traditional
Contrastive Learning methods. Specifically, mask models
operate on the token level, whereas traditional Contrastive
Learning methods focus on the global feature of the entire
input, and in mask models, positive samples are not clearly
defined, but are “randomly sampled” based on the similarity
between Spectral Clustering features.

Based on the formulation, we could answer several concern-
ing questions about mask models: 1) Why optimal masking
ratio vary among modalities? 2) Why is there a large gap be-
tween linear probing and finetuning performance for mask
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models? 3) Does mask modelling rely on network architec-
tures?

For the first question, we argue that a critical factor that
affects the goodness of pretrained features is the number of
clusters in Spectral Clustering. For example, if we have an
image with a dog on the grass, intuitively we should have
two clusters: grass and dog. It could be less representative if
we have more clusters and divide one of the existing clusters
into different sub-clusters and repel one from each other.
The number of clusters is given by the number of leading
eigenvectors, which is related to the rank of reconstructed
matrix in LRR problem and masking ratio in MIMs. This
explains why we need different masking ratios in different
modalities (Devlin et al., 2018; He et al., 2022; Tong et al.,
2022; Huang et al., 2022).

For the second question, it is due to the nature of token
level Contrastive learning. Pretrained mask models learns to
divide tokens into clusters, but doesn’t always learn which
cluster is most related to the class. Therefore, token mixing
layers are needed to “select” clusters. Most MIMs apply an
extra BatchNorm layer when performing linear probing, oth-
erwise a huge accuracy drop is witnessed (loffe & Szegedy,
2015; He et al., 2022). It could be due to the lack of patch
selection and a BatchNorm is needed to add non-linearity.
In contrast, we found that partially finetuning one linear
layer for row mixing with the prediction head could much
improve classification accuracy.

For the third question, the answer is ”Yes”. Model architec-
tures containing token mixing layers plays a crucial role in
the success of mask models in classification tasks (Vaswani
et al., 2017; Dosovitskiy et al., 2021; Liu et al., 2022; Tol-
stikhin et al., 2021). Finetuning these layers allows the
model to learn how to select tokens. Meanwhile, the layer
normalization in the decoder might also be important, as it
serves as a token level batch normalization, which is com-
monly used in the projection layer of Contrastive Learning
models to improve performance (Ba et al., 2016; loffe &
Szegedy, 2015). Therefore, we conclude that mask model
is dependant of network architecture.

In a summary, our main contributions are:
1. We created a mathematical framework for mask im-

age modeling by viewing it as a low-rank recovery
problem.

2. We found that mask model could be viewed as a token
level Contrastive Learning, which could account for its
good performance on downstream tasks.

3. Our analysis framework could explain several impor-
tant behaviors of mask models.

We mainly conducted experiments on images, but our find-

ings could be easily generalized to all modalities.

2. Related Works
2.1. Mask Image Modelling

The recent trend in self-supervised learning is to train vision
transformers using masked images to reconstruct the orig-
inal ones. (Dosovitskiy et al., 2021). RDifferent types of
reconstruction objectives, such as token-wise, feature-wise,
and pixel-wise reconstruction, are being tested. (Zhou et al.,
2022; Chen et al., 2022; 2020). These kinds of pretraining
tasks are called Masked Image Modeling (MIM) (Bao et al.,
2022). There are two main architectures for these models:
one that only accesses visible tokens in the encoder and
attaches an extra decoder (He et al., 2022; Bao et al., 2022),
and another that passes both visible and mask tokens into
the encoder and has a single linear layer as a decoder (Xie
et al., 2021). Our formulation is based on the first type of
architecture. These mask models serve as a pretrain model,
and for downstream tasks, we either finetune or perform
linear probing. For classification, a linear head is appended,
and the parameters are initialized from the pretrain models.
The difference between finetuning and linear probing is that
the parameters of the pretrained model are frozen in linear
probing.

2.2. Theoretical Analysis of Mask Models

Previous works on mask models have provided theoretical
frameworks for understanding the attention operation in the
encoder (Cao et al., 2022), proposed that MIMs are learning
semantics (Pan et al., 2022), and claimed that mask models
learn global features that are occlusion invariant (Kong &
Zhang, 2022). Our work is distinct from these previous
works in that we emphasize the connection between mask
modeling and Contrastive Learning. One work also men-
tioned that the decoder in MIMs is performing low-rank
recovery, but the authors did not link this to the success of
MIMs (Cao et al., 2022).

2.3. Spectral Contrastive Loss

The Spectral Contrastive loss was proposed as a way to
provide a provable guarantee for downstream task perfor-
mance (HaoChen et al., 2021; Arora et al., 2019). However,
some later work has identified issues with the formulation
and stronger assumptions are needed to achieve the guar-
antee (Saunshi et al., 2022). Despite this, the theoretical
framework that connects Contrastive Learning and Spectral
Clustering is still attractive. Our work is inspired by this
analysis framework, but with several differences. In their
work, the graph used for Spectral Clustering is inherent,
and the authors argue that matrix factorization approximates
the node representations of the graph. Our work, instead,
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explicitly writes out the adjacency matrix of a graph and
shows that it is related to the MIM problem. Additionally,
our work highlights the importance of rank, which is often
overlooked in previous works.

3. Preliminary and Notations
3.1. Notations of Masked Autoencoder

Our analysis mainly focus on Masked Autoencoder (MAE)
style encoder-decoder structure, where the input size of
encoder is smaller than that of decoder (He et al., 2022).
Denote the encoder in the mask modeling by f, and the
decoder by g, the sampled visible subset by X, and the
unmasked part of the original image by Xy. We adopt the
Transformer architecture as backbone, where f and g don’t
change the shape of inputs (Vaswani et al., 2017).

Definition 3.1. To train the masked autoencoder and achieve
the best performance can be interpreted as solving the mini-
mization problem:

a;gminHQOf(X)—XoH?p, (1
’g’

where X € RVXF X ¢ RNoxXF We reshape the matrix
of image so that IV is the number of visible patches and Ny
is the number of masked patches. We also have the loss
defined as

Laran(f,9,X) = |lgo f(X) = Xol% )

Figure 1. Overall structure of Mask Autoencoders. Only visible
tokens are passed through the encoder, and a decoder applies
encoder features to reconstruct mask tokens.

3.2. Basic Low-rank Recovery Problem

The basic low-rank recovery problem solves the following
optimization problem:

argmin ||13—D||F subject to rank(ﬁ) < rank(D) (3)
b

Based on the Eckart—Young—Mirsky theorem (Horn & John-
son, 1985), the low-rank approximation problem has a solu-
tion in terms of singular value decomposition of the original
matrix, which is in the form: D = Y"!_, o;u;v}, where

i
o; is the it singular and u; and v; are its corresponding

left and right singular vectors. We could also write it as
D= UTZTVTT, where U,., V,. contains the first  columns
of U and V, and %, is an r X r matrix with the top r leading
singular values as diagonal.

3.3. Spectral Clustering with Normalized Adjacency
Matrix

Suppose we have a n-node graph G with the adjacency
matrix A:

Wn1 - Wnn

The normalized adjacency matrix is defined as &/ =
D=3AD~%, where D is the degree matrix of graph G,
which is a diagonal matrix such that D;; = Z;'L:1 Wij = W;.
To get k cluster of the graph, take the leading top k eigen-
vectors of .2/ as node embedding and perform k-means

algorithm on the node embedding (Ng et al., 2001).

4. Mask Modeling as a Patch-wise Contrastive
Learning

4.1. Mask Modeling is Low Rank Recovery

In this section, we formalize MAE as a low-rank recovery
task. As X is a smaller portion of the original image and f
doesn’t change the size of input, f(X) naturally has a lower
rank compared to X. we assume the following condition is
true:

Assumption 4.1. g o f(X) has a lower rank than X.

Remark 4.2. In practice, even if g is a non-linear function
that doesn’t guarantee low rank assumption, we find that
g(f(X)) still has a very low rank. Arguably it is because
reconstructing unseen tokens is very hard to optimize and
only leading singular vectors can be approximated

Under this assumption, the minimization problem can be
rewritten as

argmin [|g o f(X) — Xo|% €

£s9,
subject to rank(g o f) < rank(Xj).

4.2. Mask Modeling is a Parametric Version of Spectral
Clustering

In section 3.2, it is showed that the low-rank approxima-
tion problem is solved by singular value decomposition of
the higher-ranked matrix. Suppose the required rank is k,
then the optimal solution is a linear combination of top k
eigenvectors of XX obtained from singular value decom-
position.
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Consider Spectral Clustering which clusters a graph into &
connected components such that there is minimal effect on
graph Laplacian. Spectral clustering performs dimensional
reduction with & eigenvectors corresponding with the largest
k eigenvalues of the normalized adjacency matrix.

Both mask modeling and Spectral Clustering are utilize &
eigenvectors, hence, we propose that the behaviors of mask
modeling is similar to the behaviors of Spectral Clustering.
Consequently, the classifier trained based on mask modeling
based f and Spectral Clustering based f gives the same
prediction. Formally we have:

Theorem 4.3. Define weights of adjacency matrix for graph
G as w;j = (Xor, XOT’J.), where Xo,; is the low-rank ap-
proximation of the representation for ith patch of Xy. Given
the corresponding normalized adjacency matrix <7, optimiz-
ing mask modeling is equivalent to optimize the following
loss on classification downstream tasks.

Lapeel .0, X) = ||(g0 FCO) (g0 FX)T — %
5)

Proof. The SVD of X, gives Xg = UXV7, then A =
Xo, XT = U, X2U7.

Since A is symmetric and D is diagonal, <7 is symmetric
and SVD of & has the form of U, X, U2 Plugin A gives

o =D 2AD"®
=D :U,S2U D3
T
- (D—%UTD%) (D—%zzp—%) (D—%UTD%) .

Therefore, U,y = D’%UTD% and X, = D’%EfD’%.
The SVD of Xy can be rewritten as Xg. =
D2U,D 2%, VT. With Eckart—Young—Mirsky Theorem,
we rewrite the minimization problem of mask modeling as

2
argminHQOf(X)—D%UdD_%ZVTH )
£9,X F

whose optimal solution is D:U,D~2xVT. Note that
D is a diagonal matrix, so we could find B, such that
D%UMD’%EVTB = UMD’%EVT. Therefore, we can
discard Dz, making the optimization problem into:

2
argmianof(X)fUdD*%EVTH ,
f9,X F

Multiply g o f(X) and U, D~2XV7T with their transpose
and make an optimization problem, we finish the proof. [J

Therefore, MAE learns to approximate the Spectral Cluster-
ing features. We further discuss the importance of having
appropriate k in Section 5.1

4.3. Lpc. is a Spectral Contrastive Loss

Rewrite L., mask modeling can be viewed as a token
level Contrastive Learning. We define the i*" row of go f (X))
as y/w;u;, the predicted patch representation.

We could rewrite Ly, into,

Lapee = || (g0 F(X)) (g0 f(X)T = |

= H(gof(X))(gof(X))T _ p-iap-i i

- Z ( ﬁT - <Mui>T<\/w7uj>)2

2
wys 2
= Z —L — 2wiu w4+ wiw; - (u] uy)
g\
(6)

Apply the kernel trick, changing w;; into W;;, such that
Wi = exp(52%) (Hofmann et al., 2008). With a choice of
o, we have W;; defined as (or approximates) the probability
of u; and u; to be a positive pair. Following the notations
of Spectral Contrastive Loss, we make Equation (6) into the
form of a Contrastive loss (HaoChen et al., 2021).

£spec = Ecom + const, @)

where Leony = =2 E, o+ [uTu] +E, - {(u—ru’)z}

The above shows that MAE loss is equivalent to a Con-
trastive loss on masked tokens. We further show that it
inherently perform Contrastive Learning on visible tokens.

To simplify the model, we make the following assumption:

Assumption 4.4. Denote one of the original patch of the
it" masked token as Xo,i, the predicted feature u; is a linear
combination of features of visible tokens, such that u; =
>_;j a;juj. Assume this transformation is made by decoder
g.

Lemma 4.5. Optimal a; is positively correlated with patch
similarity XOT’Z-XOJ.

Proof. Consider the gradient flow from MAE loss to ay,
passing u;.

OLymare  OLymar Ou;

dar,  Ou; Oay
2(ui — ‘Xvoﬂ')—ru;C

= 2(2 Qj ; — Xo,i)T'LL;C
J

OLpmAE _ T L oINT
FAE = 0 when aguy, uj, = (Xo,: Zﬁék ajul) " uy.
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We assume v’ is uniformly distributed, then

Zaju; ~ C(1—ay),

ik

where C'is a constant that is the same for all patches. Hereby
we obtain the optimal ay,

XOT’iu;C - C
C + [y |®

ag

Meanwhile, as there’s only one transformation between ),
. , o .
and X ;, we view u; as an approximation to X j:

X(IiXOJC -C
ap ~ -

C+ | Xokl*

It indicates that aj, is higher regarding u; when the original
patches are similar to each other.

O

As the representation of masked tokens is mainly com-
posed of similar tokens, performing Contrastive Learning
on masked tokens inherently performs Contrastive Learning
on visible tokens.

Remark 4.6. We could view the layer normalization layer
in MAE’s decoders as a token level batch normalization,
and the entire decoder as a non-linear projection layer in
Contrastive Learning methods (Ba et al., 2016).

Remark 4.7. Though reconstructing masked tokens make it
more complicated and less explainable, it is required as re-
construction visible tokens could lead to a shortcut solution
of identity mapping.

5. Patch-wise Contrastive Learning Explains
Mask Model Behaviors

Based on the theoretical framework proposed, we could
explain several parameter choice and architecture design for
mask models.

5.1. Mask Ratio for Different Modalities

In Section 4.2, we demonstrate that mask models are a
parametric version of Spectral Clustering, and they learn to
decrease intra-cluster distances while increasing distances
between different clusters through Contrastive Learning.
Therefore, an appropriate number of clusters is a crucial
factor that affects the quality of the features learned. When
we consider each cluster has a pseudo-class label, too few
or too many classes can both be indistinct when trying to
separate the classes. Therefore, we define the following:

Definition 5.1. Let s be the ratio of appropriate cluster
numbers to total number of tokens. We have

num_cluster k

§=——— = — 8

num_tokens  Np’ ®)
where k is the number of leading eigenvectors in Spectral
Clustering, and Ny is the number of tokens for reconstruc-
tion.

In mask models, & is subjected to rank(g o f(X)), which
is determined by the number of visible tokens N. If we
assume rank(g o f(X)) is proportional to N, we have:

N
— 9
SN &)
As X = 1 — mask_ratio, s is thus determined by the

No

masking ratio.

Intuitively we know that s is smaller for modalities with
lower information density, such as video, vice versa. There-
fore, we need a higher masking ratio for lower-density
modalities and a smaller one for higher-information-density
modalities (Huang et al., 2022; Wettig et al., 2022; He et al.,
2022; Tong et al., 2022).

5.2. Linear Probing Mask Image Models

When tuning MIMs on image classification tasks, there is a
significant gap between linear probing and finetuning (He
et al., 2022). A trick that is often used to improve linear
probing performance is to append a batch normalization
layer before the linear head (Chen et al., 2021). Without the
BN layer, and with an appropriate batch size, the classifica-
tion accuracy can drop significantly (Wu & Mo, 2022).

We argue that this is due to the nature of token-level Con-
trastive Learning. MIMs only learn to create and separate
several clusters, but do not learn which cluster is indicative
of the class label. It is often the case that the class token
from a pretrained MIM does not learn the correct cluster.
Therefore, partially finetuning a token mixing layer can
greatly boost accuracy (He et al., 2022). We also argue that
the BN layer adds non-linearity that partly serves as a token
mixing layer. Therefore, we may need to rethink whether
linear probing is a "fair” method to evaluate MIMs.

5.3. Network Architecture Matters

As discussed in Section 5.2, MIMs do not know how to
select important tokens without finetuning. Therefore, a net-
work architecture with token mixing layers is crucial for the
success of mask models on classification tasks. Finetuning
these layers allows MIMs to understand what are important
tokens.
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Another factor that may affect token selection is the number
of attention heads in the Transformer architecture (Dosovit-
skiy et al., 2021). If token selection is a random process,
more attention heads could increase the chances that tokens
in the desired object are chosen. However, it may also re-
duce the representation capacity as the number of output
logits become smaller. In practice, we found that, at least
for some existing models, using more attention heads can
improve both linear probing and finetuning performance on
classification tasks.

6. Experiments

We have verified several of our assumptions and mathe-
matical formulations with MAE models pretrained on Ci-
far10 and ImageNet-1K (IN-1K) datasets (Krizhevsky et al.,
2009; Deng et al., 2009). The model backbones used for
Cifar10 and ImageNet are ViT-Tiny and ViT-Base, respec-
tively (Dosovitskiy et al., 2021). For ViT-Base on IN-1K,
we followed the settings of MAE (He et al., 2022). The
parameters of ViT-Tiny on Cifar-10 are given in Table 4, 5.
We have used the same parameters for linear probing and
finetuning, as we found that changing the optimizer of linear
probing to AdamW gives better performance (Loshchilov &
Hutter, 2017).

6.1. Low-rank Approximation of Different Mask Ratio

To verify Assumption 4.1, and our claim in Section 5.1, we
computed the average distance of left singular vectors u;
between the reconstructed image and the original image on
the Cifar10 dataset. Note that left singular vectors are the
eigenvectors of the token similarity matrix (XoX, for the
original image), which is correlated with Spectral Clustering.
We have visualized the leading 5 vectors in Figure 2.

Distance between Reconstructed and Original
Left Singular Vectors

2
15
1
05 I I I
0
1 2 3 4 5

m90% MASK  m75% MASK  m60% MASK

Distance

Figure 2. Distances between left singular vectors of recon-
structed image and original image. We demonstrate the top-5
distances for models pretrained on three different masking ratios.

Our results demonstrate that for all of the three masking

ratios, only 2 to 3 singular vectors of the token similarity
matrix are notably approximated, which verifies our assump-
tion of a low-rank structure in the token representations.

Additionally, we found that a higher masking ratio leads to
the model approaching fewer singular vectors, resulting in
fewer clusters in Spectral Clustering. This trend is further
supported by our analysis of the distance of singular vectors,
as shown in Table 1. We define d; as the distance of the
it" singular vector, with 2 — d; approximating how far it is
from random initialization. We observe that when 22_71?11 is
larger, the model under this masking ratio tends to approach
fewer singular vectors, thus verifying our claim in Section
5.1.

Table 1. Distance ratio between one singular vector and the
next. d; is the distance of i*" singular vectors, we calculate

2-d; . .
5= d‘-:—l as a measurement of how fast distances increase.
3

2—d; 2—dy

MASKING RATIO =dy G-

60 % 1.73  3.01
75 % 1.81 5.07
90 % 2.09 8.89

6.2. Visualizing CLS Token of MAE

In Section 5.2, we discussed about MAE’s potential failure
on cluster selection, hence, we visualized the CLS tokens’s
attention map on the last encoder block. This experiment is
carried out on Cifar10 with ViT tiny, so we have 3 attention
heads and thus 3 maps for each image.

We randomly picked two images from Cifar10 and visual-
ized the attention map mentioned above in Figure 3. In the
first image, we can see that Head O gives an outlier of the
horse, which is a useful cluster that represents the object in
the image. However, in the second image, all of the heads
fail to capture the object in the image.

6.3. Different Probing Methods

In this experiment, we compare three different probing meth-
ods mentioned in Section 5.2. We conducted our experi-
ments on both Cifar10 and IN-1K datasets with 1) linear
probing with a linear head (LP), non-learnable batch normal-
ization + linear probing (BN + LP), and partial finetuning
(Partial FT). For partial finetuning, we tune a linear head
and the last gkv projection layer in the encoder, which is
also linear.

From our results in Table 2, it is apparent that there is a sig-
nificant difference in performance between LP and BN+LP.
This gap is larger than what is typically seen in other Con-
trastive Learning models (Chen et al., 2021). Another ob-
servation is that giving the model a simple learnable token
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(a) Input (b) Head O (c) Head 1 (d) Head 2

Figure 3. Visualization of CLS token’s attention map on the
final layer. Row one demonstrates a successful example where
one of the attention heads captures the desired object. Row two is
a failed example where none of the attention heads captures the
desired object. (a) is the input image, (b) (c) (d) are the attention

maps of three different heads.

Table 2. Classification accuracy with different probing methods.
We tested on three probing methods: linear probing with only a
linear head (LP), batch normalization + linear probing (BN + LP),
and partial finetuning (Partial FT). For partial finetuning, we tune
a linear head and another linear layer from the original model (last
gkv projection layer).

BN+LP  PARTIAL FT

76.6 83.3
68.0 69.3

DATASET LP

CIFARIO 64.4
IN-1K 48.0

mixing layer could much improve classification accuracy.

6.4. Ablation on Number of Attention Heads

This experiment supports our assertion in Section 5.3 that
the number of attention heads can impact the performance
of MIMs. By increasing the number of heads in the ViT-
Tiny model from 3 to 6 during pretraining, we observed a
significant improvement in accuracy for both linear probing
and finetuning on the classification task. The results are
detailed in Table 3.

Table 3. Classification accuracy with different attention head
numbers. We pretrained a ViT-Tiny on Cifar10 with 3 and 6 atten-
tion heads respectively. This table shows classification accuracy
with linear probing (without BN) and finetuning.

HEADS LP FT
3 64.4 89.7
6 67.5 (+3.1) 90.2 (+0.5)

6.5. Finetuning Mask Model on Contrastive Loss

To further demonstrate the similarity of MIMs and Con-
trastive Learning, we finetuned a pretrained MAE model on
a Contrastive loss task using Moco loss (Chen et al., 2021).
We used the IN-1K pretrained MAE model and finetuned
it for 30 epochs using the Moco loss, with a randomly ini-
tialized projection layer. We then compared the loss curve
of this finetuned model with a Moco model trained from
scratch. The results, shown in Figure 4, indicate that the
MAE pretrained model quickly adapts to the Moco loss,
suggesting that MIMs and Contrastive Learning share some
similarities.

However, it should be noted that this is not a rigorous vali-
dation of their equivalence, but rather serves as supportive
evidence for our claim.

Finetune MAE on Moco Loss

=== MAE Pretrained ====Scratch

Moco Loss

1.80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Epoch

Figure 4. Finetune MAE on Moco loss. The blue line starts from
a pretrained MAE, while the orange line starts from scratch. We
finetuned for 30 epochs.

7. Discussion

Although mask modelling is a variant of Contrastive Learn-
ing at the token level, mask models have a distinct advantage
in terms of pretraining efficiency and scalability as com-
pared to other methods. This raises an interesting question:
What is the most representative aspect of an input? Recent
research has shown that certain patches within an image can
be more informative than the whole image. This suggests
that computing on the token level can lead to faster and
more efficient training. However, the optimal patch size
might be different for different tasks. Previous studies have
shown that the optimal patch size for image classification
is between 16 to 32 (Xie et al., 2021; Dosovitskiy et al.,
2021), while a transformer-based model with a patch size of
8 performs better on semantic segmentation tasks (Strudel
et al., 2021). This highlights the need for further research to
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determine how to most effectively use unlabeled inputs for
different tasks.

8. Conclusion

In this paper, we propose a theoretical framework for an-
alyzing mask models. We discover that mask modeling is
a form of Contrastive Learning at the token level, which
may account for its success. Our framework also addresses
important questions regarding the behavior of mask mod-
els. We hope that our study will offer valuable insights into
designing self-supervised learning algorithms and model
architectures.

Table 4. Pretraining parameters of ViT-T on Cifar10

config value

optimizer AdamW

base learning rate 1.5e-4

weight decay 0.05

optimizer momentum 51, 82 = 0.9,0.95
batch size 512

learning rate schedule cosine decay
warmup epochs (Goyal et al., 2017) | 200

total epochs 2000
augmentation None
patch size 2 %2

Table 5. Finetuning and Linear probing parameters of ViT-T
on Cifar10

config value

optimizer AdamW

base learning rate le-3

weight decay 0.05

optimizer momentum | (57, B2 = 0.9,0.999

batch size 128

learning rate schedule | cosine decay

warmup epochs 5

training epochs 100

augmentation None
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